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Abstract

Artifi(:ial tummrit:aldissipation is an importa/lt issltein large Rcyn()ldsrmmbcr

computations. In sltch computati()ns, the artificial dissipation inhcr(:nt ill traditional

num(;rical schemes can overwhelm tile physical dissipation and yield inaccurate results

on meshes of practical size. In the present work, the space-time conservation element

and solution element method is used to construct new and accurate implicit numerical

schemes such that artificial numerical dissipation will not overwhelm physical dissipa-

tion. Specifically, these schemes have the property that numerical dissipation vanishes

when the physical viscosity goes to zero. These new schemes therefore accurately

model the physical dissipation even when it is extremely small. The new schemes pre-

sented are two highly accurate implicit solvers for a convection-diffusion equation. The

two schemes become identical in the pure convection case, and in the pure diffusion

case. The implicit schemes are applicable over the whole Reynolds number range, from

purely diffusive equations to convection-dominated equations with very small viscosity.

The stability and consistency of the schemes are analysed, and some numerical results

are presented. It is shown that, in the inviscid case, the new schemes become explicit

and their amplification .factors are identical to those o.f the Leapfrog scheme. On the

other hand, in the pure diffusion case, their principal amplification ,factor becomes the

amplification .factor of the Crank-Nicolson scheme.
"i.

1 Introduction

The method of space-time conservation element and solution element (the CE/SE method,

for short) is a new numerical discretization method for solving conservation laws [1-14].

It aims to overcome the limitations of the established methods, and is designed to be a

mathematically simple yet general, accurate and robust method for solving conservation

laws. The emphasis is on the simulation of the integral forms of the laws, rather than the

differential forms. This allows for better simulation of regions of rapid change, such as shocks

and boundary layers, where the numerical solution is not smooth. The method has been

developed on the basis of local and global flux conservation in a space-time domain, in which

space and time are treated in a unified manner. Derived properties of the conservation laws,

such as the characteristics and the shock-jump conditions, are not used in the construction

of the method. For problems in multiple spatial dimensions, the method is genuinely

multidimensional and is fully compatible with unstructured meshes [2, 4]. The CE/SE

method was first published in this journal in 1995 [1]. The generalization to multiple spatial

dimensions appeared in this journal in 1999 [2]. The Introduction section of [1] begins with

a lengthy discussion that focuses more on physics than on numerics. From this discussion,

readers can understand (i) the considerations that motivate the new method, and (ii) the

key differences that separate it from the established methods.

By using a set of design principles that are extracted from the discussion mentioned

above, several two-level explicit schemes were constructed in [1, 10] to solve (i) the pure

convection equation

Ou/Ot + a 8u/Oz = 0 (1.1)



and (ii) the convection-diffusion equation

Ou/Ot + a Ou/Oz - # O"u/02 = 0 (1.2)

where the convection velocity a, and the viscosity coefficient # (> 0) are constants. These

schemes were then extended to solve the 1-D time-dependent Euler and Navier-Stokes equa-

tions of a perfect gas [1, 10]. Moreover, the above 1-D solvers of Eq. (1.1) have been

generalized to their 2-D counterparts [2, 14, 12]. Because of the inherent simplicity and gen-

erality of the current method, the above multidimensional generalization is a straightforward

matter. Also, as a result of the similarity in their designs, each of the above 2-D schemes

shares with its 1-D version virtually the same fundamental characteristics.

In this paper we shall describe a simple and innovative approach by which accurate

implicit time-marching solvers can be constructed using the CE/SE method. A portion of

this work was presented in [5], and a more general version was recorded in [6]. A striking

feature of this new treatment is that the modeling of the diffusion-related terms involves

interpolation between neighboring mesh points while that of the convection-related term

does not. As a preliminary, first we shall discuss the pros and cons of explicit and implicit

schemes.

For a two-level explicit scheme, the value of a solution at any mesh point has a finite

domain of dependence at the previous time level. As an example, consider a finite-difference

solver for Eq. (1.1). Let u_', the mesh value of u at any mesh point (j, n) (point P in

- ,_-1 Then the domain of dependence of u}' atFig. l(a)), be determinedby '*, 1,and
the (n - 1)th time level contains three mesh points. Also one can see that u_ is dependent

only on the initial data given on the line segment AB.

For an initial-value problem, such as a time-dependent Euler problem or a problem

involving Eq. (1.1), the solution at any point in space-time also has a finite domain of

dependence on the initial plane, As a result, explicit schemes could be ideal solvers for such

a problem if they satisfy" the requirement that the physical domain of dependence be a subset

of the numerical domain of dependence.

On the other hand, the solution of an initial-value/boundary-value problem at any point

in space-time is dependent on the initial data and the boundary data up to the time of the

point under consideration. As an example, consider a problem involving Eq. (1.2). As shown

in Fig. lib), the solution at point P is dependent on the initial/boundary data given on EC,

CD, and DF where E, P, and F are at the same time level. Let this problem be solved

using the explicit scheme that was explained using Fig. l(a). Let P also be a mesh point

(j, n). Then u}' is dependent only on the initial/boundary data given on AC, CD and DB.

It is completely independent of those data given on AE and B F. Contrarily, if the same

problem is solved using an implicit scheme, then u_ is dependent on the initial/boundary

data given on EC, CD, and DF. In other words, the numerical domain of dependence of

the implicit scheme is consistent with the physical domain of dependence of the problem

under consideration.

Two observations can be made as a result of the above discussions.

(a) Generally an explicit scheme is not an ideal solver for an initial-value/boundary-value

problem. Because a time-dependent Navier-Stokes problem is such a problem, the
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above argumeat impli_ that an explicit scheme cannot be iLsc_[ tc_ solw: a time-

dependent Navier-Stokes problem except for the special circumst_tnce in which errors

caused by neglecting certain initial/boundary data (such as those given on AE and

BF in Fig. l(b)) are relatively small. The factors that help achieve the above special

circumstance include: (i) a sm_.ll time-step size to spatial-mesh interval ratio, (ii) a

small time rate of change of boundary data, and (iii) a small contribution of the viscous

terms in the Navier-Stokes equations relative to that of the inertial terms. Note that

condition (iii) may be met by a high-Reynolds-number flow.

(b) Generally an implicit scheme is not an ideal solver for an initial-value problem. This is
because the domain of dependence of the former is greater than that of the latter and,

as a result, an implicit solution tends to be contaminated by extraneous information.

2 Preliminaries

Let Eq. (1.1) be in a dimensionless form. Let xl = z and x2 = t be considered as the
coordinates of a two-dimensional Euclidean space E2. By using Gauss' divergence theorem

in the space-time F__, it can be shown that Eq. (1.1) is the differential form of the integral

conservation law

" o (2.1)

Here (i) S(V) is the boundary of an arbitrary space-timeregion V in F-a, (ii) £ = (au, u)

is a current density vector in E_, and (iii) ds" = da,_ with da and ,_, respectively, being

the area and the outward unit normal of a surface element on S(V). Note that (i) Ft. dg

is the space-time flux of Ft leaving the region V through the surface element dg, and (ii) all

mathematical operations can be carried out as though F_ were an ordinary two-dimensional

Euclidean space.
In the following, we shall briefly review the inviscid version of the explicit a-/J scheme

[1, 10]. Let fl_ denote the set of mesh points (j, n) in E2 (dots in Fig. 2) where n =

0, 4-1,-I-2, 4-3,..., and, for each n, j=n,n 4-2,n 4- 4, .... There is a solution element (SE)

associated with each (j, n) E _1. Let the solution element SE(j, n) be the space-time region

bounded by the dashed curve depicted in Fig. 3. It includes a horizontal line segment, a

vertical line segment, and their immediate neighborhood.

For any (x, t) e SE(j, n), u(x, t), and ft(z, t), respectively, are approximated by u'(x, t ;j, n)

and Ft'(x, t ; j, n), which we shall define shortly. Let

;j, n) = ,,; + + Nd;(t- t") (2.2)

n ,_ nwhere (i) u#, ( ,)1, and (ut)'] are constants in SE(j, n), and (ii) (x#, t") are the coordinates
" u " (ut)'_ can be interpreted as the numericalof the mesh point (j, n). Note that u_, ( ,)¢, and

analogues of the values of u, Ou/Ox, and 0u/_ at (x_, t"), respectively.

We shall require that u - u*(x,t ;j,n) satisfy Eq. (1.1) within SE(j,n), i.e.,

'U n._.( t)j -a (u_)_' (2.3)
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C_mdfining Eqs. (2.2) and (2.3), one has

u'(:r.,t;j,n)=uy +(u_)y[(x-x2)-a(t-t'_)] (z,t) ESE(j,n) (2.4)

Because f_ = (au, u), we define

f_*(x,t;j,n) = (au*(x,t;j,n), u*(x,t;j,n)) (2.5)

Let E2 be divided into nonoverlapping rectangular regions (see Fig. 2) referred to as

conservation elements (CEs). As depicted in Fig. 4, the CE with its top-right (top-left)

vertex being the mesh point (j, n) 6 ftl is denoted by CE_(j, n) (CE+(j, n)). Obviously the

boundary of CE_(j,n) (CE+(j,n)) is formed by subsets of SE(j,n) and SE(j - 1,n - 1)

(SE(j + 1,n- 1)). The current approximation of Eq. (2.1)is

F+(j,n) de=f/ ft* • dg= 0
Js (CE±O',n))

(2.6)

for all (j, n) 6 f_l. In other words, the total flux leaving the boundary of any CE is zero.

Because (i) The CEs associated with _21 can fill any space-time region, and (ii) the

surface integration across any interface separating two neighboring CEs is evaluated using

the information from a single SE, the local conservation condition Eq. (2.6) leads to a global

conservation relation, i.e., the total flux leaving the boundary of any space-time region that

is the union of any combination of CEs will also vanish.

With the aid of Eqs. (2.4)-(2.6), it can be shown that

tu+V_-xl (1 v) (u_-uy+l)F+(j,n)/Ax = 4-(1 - v 2) [(u+)_ +, x/,4+1J + =F ,-1 (2.7)

Et
where v = aAt/Ax is the Courant number, and (u,)y = (Ax/2)(u,)_. Note that here Ax

and At, respectively, represent the same mesh interval and time-step size which were denoted
rt 4- n

by Ax/2 and At�2 in [1, 10]. Using Eqs. (2.6) and (2.7), uj and (u_)j, which are considered

as independent unknowns at the mesh point (j, n), can be solved for in terms of uy2. _ and

(_,+_n--I /22_ Jj4.1 if 1 - # 0. It can be shown that, for all (j, n) •ftx,

¢(j,n)=Q+¢(j-l,n-1)+Q_¢(j+l,n-1) (1 - v2 :fl O) (2.8)

n + n
Here (i) _(j,n) is the column matrix formed by uj and (u,)_, and (ii)

Q+d"_(1/2) ( 14-vT1 -1-(12u2))-1 (2.9)

Eq. (2.8) defines a marching scheme. Because this scheme is the special case of the a-#

scheme when It = 0, hereafter it will be referred to as the a scheme. It is the only two-

level explicit solver of Eq. (1.1) known to the authors to be neutrally stable, i.e., free from

numerical dissipation.

In the above construction of the a scheme, we use the SEs and CEs of the mesh points

marked by dots in Fig. 2. A similar construction can be performed by using the mesh points

marked by triangles in Fig. 2. Let f_2 denote the set of mesh points (j, n) in E2 (triangles



in Fig. 2) where n = 0,-1-1,-t-2, -1-3,..., anti, for each n, j = n 4- l,n 4- 3, n 4- 5,.... Let

th¢, SEs and CEs of 9t_ bc ¢l¢,'fill(',(I by using Figs 3 and 4 with dots replaced by triangles.

Obviously (i) the CEs of fl'2 also fill any space-time region, aid (ii) the a scheme can also

bc constructed using the SEs and CEs of t22. This new scheme is defined by Eq. (2.8) with

(j, n) E f_2.

Before we proceed further, some intricate points related to the above constructions will

be clarified with the following remarks:

(a) SE(j, n) may intersect SE(j', n') if (j, n) E _"_1and (j', n') • f_2.

(b) Let (j, n) • fll. Then (i) (j + 1,n) • f12, and (ii) CE+(j,n) and CE_(j + 1,n) represent

the same rectangle in E2. However, because the function f_* used in the evaluation of

F+ (j, n) is tied to a pair of SEs associated with fll, while that used in the evaluation

of F_ (j + 1, n) is tied to another pair of SEs associated with g12, F+(j, n) = 0 and

F_ (j + 1, n) = 0 represent two completely independent flux conservation conditions.

To prepare for the development of the implicit solver to be described in the next section,

we shall combine the above two independent schemes into a single scheme. The new scheme,

referred to as the dual a scheme, is defined by Eq. (2.8) with (j, n) • fl where fl d_=ffll U f_2.

Obviously, a solution of the dual a scheme is formed by two dec0upled solutions with each

being associated with a mesh that is staggered in time. Several classical schemes also have

this property. Among them are the Leapfrog, the DuFort-Frankel, and the Lax schemes [15].

3 The implicit schemes

An implicit solver for Eq. (1.2), referred to as the a-_(I1) scheme, will be discussed first

in this section. Here "I" stands for "implicit", and "1" is the identification number. This

discussion will be followed by a brief discussion of another implicit scheme, termed the a-

#(I2) scheme. The implicit schemes are constructed to meet two requirements given in the

following discussion:

(a) With a few exceptions, numerical dissipation generally appears in a numerical solution

of a time-marching problem. In other words, the numerical solution dissipates faster

than the corresponding physical solution. For a nearly inviscid problem, e.g., flow at a

large Reynolds number, this could be a serious difficulty because numerical dissipation

may overwhelm physical dissipation and cause a complete distortion of solutions. To

avoid such a difficulty, the model solver is required to have the property that the

numerical dissipation will approach zero as the physical dissipation approaches zero.

(b) The convection term and the diffusion term in Eq. (1.2) involve the spatial derivatives of

first order and second order, respectively. Thus, in a spatial region where a solution is

very smooth, the diffusion term is negligible compared with the convection term. As a

result, the effective physical domain of dependence is more or less dictated by Eq. (1.1).

To prevent excessive contamination of the solution by extraneous information, the

implicit solver will be required to become an explicit solver in the limiting case in which

the diffusion term vanishes.
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Becauseof the requirementsset forth in (a) an(l (b), the implicit solverwill beconstructed
such that it reducesto the du;d a scheme, if tt = 0. The former differs fl'om the latter only in

the extra modeling inw)lving the diffusion-related terms. Note that the presence of viscosity

is felt through (i) the diffusion term -#02u/O:r. '2 in Eq. (1.2), and (ii) the spatial diffusion

fl,L_: component --laOu/Ox in the fllzx vector

= (au- pOu/Ox, u) (3.1)

Note that Eq. (1.2) is the differential form of Eq. (2.1) if fz is defined according to Eq. (3.1).

Also, in this paper, any term in Eq. (1.2) or on the right side of Eq. (3.1) is considered to

be convection-related if it is not diffusion-related.

To construct the a-#(I1) scheme, consider a finite portion of the mesh depicted in Fig. 2

(J _> 4). We assume that (i) u = ui(x) at t = 0, (ii) u = Un(t) at x = 0, and (iii) u = uR(t)

at x = JAx, where ui(x), UL(t), and ua(t) are the given initial data, left-boundary data

and right-boundary data, respectively. Moreover, for the current case, (i) _1 and _2 are

restricted by the conditions n > 0 and ar > j > 0, (ii) CE+(j,n) are not defined if n = 0,

(iii) CE_(j, n) is not defined if j = 0, and (iv) CE+(j, n) is not defined if j -- J. Items

(iii) and (iv) imply that only one conservation condition is associated with a boundary mesh

point. Obviously, the definition of SE(j, n) also needs to be appropriately modified ifj -- 0,

or j = J, or n = 0.

Eq. (2.2) will still be assumed. We also assume that, for n = 0, 1, 2,...,

u o"= UL(t") (ut)_ = i_L(t") Uj" = Un(t") (Ut)_ = i_R(t") (3.2)

where/_L(t) d_,rduL(Q/dt and i_R(t) d_=fduR(t)/dt. Thus, only one unknown, i.e., (u,)_', and

one conservation condition are associated with a boundary mesh point (j, n).

Furthermore, for an interior mesh point (j, n), We replace Eq. (2.3) with

# ,,
(u,)_ = -a(u.)_ + _ [(U-)3+, - (u.)_'_,] J > j > 0 (3.3)

Eq. (3.3) is the numerical analogue of the differential condition Eq. (1.2). Eqs. (2.2) and

(3.3) imply that, for J > j > 0 and (x, t) E SE(j, n),

• " { _ [(u=),"+, - (u.)_'_,] - a(u.)_} (t- t") (3.4)= ,*, + (,,.);'(z- +

Next, as a result of Eq. (3.1), Eq. (2.5) is replaced by

fz*(x,t;j,n) = (au*(x,t ;j,n) - #u;(x,t ;j,n), u'(x,t ;j,n)) (3.5)

Here, for any (x, t) ESE(j, n),

u*(x,t;j,n) d_f { [(u_)_' + (u_)_'+l] /2, if t > t_; (3.6)= [(u.)_' + (u_)_'-'j /2, if t < t-.

Consider any point (x, t) on the line segment joining the mesh points (j, n) and (j, n- 1).

Then (x, t) belongs to both SE(j, n) and SE(j, n - 1), According to Eq. (3.6), for this point

u*_(x,t;j,n) =u*,(x,t;j,n- 1) = [(u,)_ + (u,)_'-']/2 (3.7)
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Ttuls, th,e same nu'me'rical diffusion flux corn, porw'nt is assigned to the point (x, t) rwa'rdless

of whether it i.s consider'ed as a point in SE(j, n) or a point in SE(j, n. - 1), in their region

of overlap.

With the above modifications, the a-#(l 1) scheme is defined by assuming Eq. (2.6). Note

that:

(a) At a mesh point E _(_2), the diffusion-related terms in Eqs. (1.2) and (3.1) are modeled

using interpolations that may involve the numerical values of the mesh points E _a (_21).

This contrasts sharply with the modeling of the convection-related terms which uses no

interpolation.

(b) In the dual a scheme, the two sets of numerical variables associated with _21 and _22

are completely decoupled from each other. Contrarily, they are "glued" together in the

a-#(I1) scheme through the interpolations referred to in (a).

To proceed, let a I.tAt/(Ax) 2, and + '_ d_f= (ut)_ = (At/2)(u_)']. Also let

def

(s+)2 =
/2

n .... (Ux)j+l(1-- g)Uj+l or (_ 1)c_(u+)_ ' (1 u a a) +n

120l + n

-_(u_.)j+2 (n=O, 1,2,...;j--O, 1,2,...,J-2) (3.s)

S n def - u(u t )j (n 2, ) (3.9)-- - - - a)(%) a =0,1, ...Ot(Ux)j__ 1 -(1 + n + ,( +)j_, (1 v)u3 + '_

def

(s_)2 =
t/

(I Jr- //)U_'_ 1 -Jr- (_ Jr - 1)a(u+)_ ' +(1-v2-oe_tu +v"lk =/j-1

/YO_. +'n
--T(%)j_ 2 (n=0,1,2,...;j=2,3,4,... J)

(3.10)

(S_)_' def (1 + U)U_ + OL(U+)_ + (1 -- + '_= _)(%)0+V(U+)'O (n=0,1.,2,...) (3.11)

By using Eqs. (2.2), (3.2), (3.4)-(3.6), and (3.8)-(3.11), Eq. (2.6) implies that

(1 :F v)u_ 4- (1 v = + ,, v + ,, pc_. +.,,- + o_)(u,).#+(_:F l)o_(u,)j+1- T(u, ).7:F,

-- (S±)_'-' (n=l,2, a,...;j=l,2,...,J-1) (3.12)

.+ rt .}- n
(l+ve)(U=)o-a(u_,),=(s+),_-,-(1-v)ua-v(u+)a (n = 1,2,...) (3.13)

o r 71

o_(u=)j_,+ " - (1 + _)(u, )y = (S_)._-' - (1 + v)u 3 + u(u+)3 (n = 1,2,. .. ) (3.14)

Eqs. (3.12)-(3.14) define the a-#(I1) scheme. Note that Eq. (3.12) represents a pair of

equations for each (j, n).
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O- I

This s(.ct, ion is conclu(h;cl with a discussion of another implicit scheme, r{,ferred to as the

a-#(/2) scheme. It differs front the a-#([1) scheme only in one respect, i.e., Eq. (3.3)is

replaced by

('_,)Y= -a("_)y + (--_)_("2+,+'_2-, - 2_,]) .,'> j > 0 (3._5)

As a result, Eq. (3.4) must be modified accordingly. Note that (i) because the a-#(I1) and

a-#(I2) schemes differ only in the representation of the viscous flux in Eqs. (3.3) and (3.15),

the two schemes are identical if }_ = 0, and (ii) because the differing expressions for (u_)_ in

Eqs. (3.3) and (3.15) are applied only in the evaluation of the flux of au* in the conservation

equations, the two schemes are identical if a = 0. Let

def

(n+)'; = (1 u+uog)u}'+l o_(u+)} ' (1-u 2 + ".... _)(,_)j+_
120_ n

--_.-(u'_ +u_+2) (n=O, 1,2,...;j=O, 1,2,...,J-2)
(3.16)

(R+)j_ 1 dd(1 p)u_. cdu +v_ - (1- + n'_ - - og)(u,)j u(u+)3 (n=0,1,2, ) (3.17)-_" \ x ]J-1 -- " " "

def

(n_)2 = (1+_, _'")'_;'-_+"('*.b +( 1-_-- k z /j-1

I.IOg _n .... ,
+--_-(u_+ j-2) (n=O,1,2, ..;j=2,3,4, J)

(3.18)

(_-)i def (1 + u)u'_ + c_(u+)_ + (1 - + "= Og)(u,) 0 +v(u+)_ (n=0,1,2,...) (3.19)

Then in the a-p(I2) scheme, Eqs. (3.12)-(3.14) are replaced by

+ n VOg n n

(1 =Fu =FvOg)u_ + (1 - v2 + Og)(u+)_ =FOg(u, )j+l =t=-_- (uj+ 1 + uj_l)

= (R+)_ '-_ (n=1,2,3,...;j=1,2,...,J-1) (3.20)

+n +n ...(1 + c_)(u_.)0-a(u,) 1 = (R+)a-'-(1-v)u'_-v(u+)'_ (n= 1,2, ) (3.21)

+n +n ...
oe(u,)j_l_(l+og)(u,)j=(R_)3-1-(l+u)u3+u(u+)3 (n = 1,2, )

Eqs. (3.20)-(3.22)define the a-#(12) scheme.

equations for each (j,n).

(3.22)

Note that Eq. (3.20) represents a pair of

4 Solution Procedure

We first discuss the solution procedure of the a-#(I1) scheme.

Eq. (3.12) is equivalent to the pair of equations

og' +'' 2(1 - u 2 + "- _(_ )_+1 +- tu_j_t + +_)(_,+))" =(1 _)(s+))'-'

Let 1-v 2 _ O. Then

- (1- _)(s_)_'-' (4._)

8



arR !

[ 4- n 4-n

"C= _ {(s4-)_-'+ (s_)_'-'+ _ [(_ b+, -("_, b-,] } (4.2)

where j = 1,2,3,... , J- 1. In the following discussion, Eqs. (3.12)-(3.14) will be replaced

by Eqs. (3.13), (3.14), (4.1) and (4.2).
Let the marching variables at the (n- 1)th time level be given. With the aid of Eq. (3.2),

the expressions on the right sides of Eqs. (3.13), (3.14) and (4.1) can be considered as given

source terms. Thus these equations form a tridiagonal system of J + 1 equations for the

4- 71 • • • ,J + 1 unknowns (u s )7, J = 0, 1, 2, J. It can be shown [6] that the coefficient matrix

associated with the tridiagonal system is strictly diagonally dominant in rows and columns,

i.e., stability of the Thomas algorithm ([15], p.99) for solving the system is assured, if

u 2 < 1 and a >_ 0 (4.3)

Upon obtaining (u s)3' j = 0, 1,2, J by solving the tridiagonal system, the other un-

knowns u}_, j = 1, 2,... , J- 1, can be obtained using Eq. (4.2). The time-marching stability

of the a-#(I1) scheme, as well as that of the a-#(I2) scheme, is discussed in the next section.

Finally, we briefly discuss the solution procedure of the a-#(I2) scheme. If the marching

variables at the (n - 1)th time level and the boundary conditions Eq. (3.2) are given, the

expressions on the right sides of Eqs. (3.20)-(3.22) can be considered as given source terms.

Thus these equations form a system of equations for the u_ and the (u+)_. at the nth time

level. Unlike the case with the a-_(I1) scheme, prior elimination of the u_' at each mesh

point to obtain a system for only the (u+)_. is not possible, as the conservation equations
n +n n

(3.20) are implicit in both uj and (%)_. Hence, the resulting system for the uj and the
+ n

(us)7 must be solved by a block version of the Thomas algorithm. This makes the a-#(I1)

scheme computationally more efficient than the a-#(I2) scheme.

5

Let

Stability Analysis

-_ (J' n ) d_/ [=(U= )jUn]+,,
(5.1)

Q_d,_(O --_/2 )= 0 (v/2 + 1)a
(5.2)

Q_,, a.l ( 1 - u 1-u2+a )= l+v -(1-v 2+o_)
(5.3)

Q{,)d,I(O= 0 (v/2-1)a)_va/2
(5.4)



<,,(0 0 ) (5.5)

Q_l.e_( o o )= l+u 1-u2-a
(5.6)

Q(o:)de_(0 (./2-1)_)= o (./2+1)_
(5.7)

Q_=)a__/(1-.0 - (1- "2 - a) )0
(5.s)

Q_2)_'d(00 -._/2)o

Then Eq. (3.12) may be expressed as

1 2

(5.9)

E QP)_(J + l,n) = E Q_2)--_(j + l,n - 1). (5.10)
/=--I /=-2

We examine the evolution of a singleFourier mode of the error by making the substitution

q_j,n) =¢*(n,O) e 'ja (i- _L'T, -, < 9_< r) (5.11)

in Eq. (5.10), where (i) _'*(n, 0) is a 2 x 1 column matrix, and (ii) 9; -_r < 8 <_ 7r, is the

phase angle variation per unit Ax of a single Fourier mode. Performing this substitution,

we obtain

Q(1)(.,_,e) ¢'(n,e) = Q(_)(.,_,e) ¢'(n - 1,e), (5.12)

where

1

QO)(.,.,e) _d F_,e"°QP)
1-----1

2 vo_ -iO u iO ]

l-u l-u + a- -Te +a(_- 1) e

= l+v -(1-.2+o_)-_e '°+o_(_+l) e-'°

2

1-----2

= (1 + v)e -i° (1 - v2 _ _)-__:_-i° _ "T _'__-2io + c_ (7 +

(5.13)

(5.14)

and

10
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= -2 [(1- ,2) + - cose)], (5.1,5)

it is evident that A (1) # 0 for -_- < t_ <_ _- if the conditions Eq. (4.3) are satisfied. Assuming

Eq. (4.3), then [Q(1)] -1 exists and we can multiply Eq. (5.12) from the left by [Q(°] -1

As a result, the amplification matrix is

= (5.16)

The amplification factors of the a-#(I1) scheme are the eigenvalues of G. It is straightforward

to show that any eigenvalue A(v, a, _) of G(v, a, 0) satisfies the condition

det [Q(2)(v, a, 8) - &Q°)(v, a, 0)] --0. (5.17)

Using the definitions Eqs. (5.13) and (5.14), Eq. (5.17) is equivalent to

A_ 2 + B_ + C = 0, (5.18)

where

A= (1-v 2) +a(1-cosS) (5.19)

B -- 2a (1 - cos_ - v 2 sin 2 _) + 2iv (1 - v 2) sin (5.2o)

and

C = - (1 - v 2) + a (1 - cos0). (5.21)

Thus, the amplification factors Ae are given by

-B -4- 4B 2 -4AC (5.22)
A+ = 2A

Note that there are two amplification factors rather than one, because there are two un-

knowns at each mesh point. Also note that (i) A+ _ :t=l and 0 --* 0 if 1 - v 2 _ 0, and

(ii) the analytical amplification factor of a plane-wave solution to Eq. (1.2) approaches 1

as _ _ 0. Therefore, ,k+ and A_ are referred to as the principal and spurious amplification

factors, respectively. Numerical evaluations of A+ have shown that the a-#(I1) scheme is

stable provided that the conditions Eq. (4.3) are satisfied.

Note that many other implicit solvers are unconditionally stable. However, the price paid

for this "desirable" property usually is excessive numerical dissipation. Moreover, the use

of a time-step size that is greater than that allowed by Eq. (4.3) generally results in a less

accurate time-dependent solution. Thus we do not consider the more restrictive stability

condition Eq. (4.3) to be a disadvantage of the a-#(I1) scheme.

11
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When/_ = 0, the a-#(II) scheme reduces by design to the dual a scheme. Also, Eq.

(5.22) implies that

A+ = -ivsinO 4- VII - v2siu '2O if # = 0 (5.23)

The amplification factors given in Eq. (5.23) are exactly identical to those of the classical

Leapfrog scheme ([15], p.100). On the other hand, Eq. (5.22) implies that

1 - (1 - cos O)
A+ = and A_ = -1 if a = 0 (5.24)

1 + a (1 - cos 9)

It is found that in this case A+ is identical to the amplification factor of the Crank-Nicolson

scheme ([15], p. 112).

The fact that the amplification factors of the a-#(I1) scheme are related to those of

two celebrated classical schemes is only one among a string of similar coincidences. Other

coincidences are summarized in the following remarks [1, 6, 10]:

(a) By using exactly the same procedure by which the dual a scheme is formed from two

decoupled a schemes, the dual a-# scheme and the dual a-¢ scheme can be constructed

using the a-# scheme [1] and the a-¢ scheme [1], respectively. It can be shown that the

amplification factors of the dual a-# scheme reduce to those of the Leapfrog scheme

when # = 0 and to those of the DuFort-Frankel scheme ([15], p.l14) when a = 0.

Also, it can be shown that the amplification factors of the dual a-e scheme (i) reduce

to those of the Leapfrog scheme when E = 0, and (ii) become the same function of _,

and 8 when E = 1 and this function is identical to the amplification factor of the Lax

scheme.

(b) It is explained in [1] that each of the Leapfrog, DuFort-Frankel and Lax schemes is

formed by two decoupled schemes (each of the decoupled schemes is defined on a

staggered space-time mesh). It is also shown in [1] that the amphfication factors of

the decoupled Leapfrog, DuFort-Frankel and Lax schemes are related to those of the

a, a-/_ and a-E schemes in exactly the same ways that the amplification factors of the

Leapfrog, DuFort-Frankel and Lax schemes are related to those of the dual a, a-# and

a-c schemes

In [6], the stability of the a-/_(I2) scheme is analysed, with the same procedure as was

used for the a-p(I1) scheme. It is shown there that the a-#(I2) scheme is stable if the

conditions Eq. (4.3) are satisfied. As pointed out in Section 3, when a = 0, the a-p(I1)

scheme and the a-/z(I2) scheme become identical. Hence, the a-#(I2) scheme shares with

the a-#(I1) scheme the property that when a = 0, its principal amplification factor becomes

identical to the amplification factor of the Crank-Nicolson scheme. Since the a-#(I2) scheme

also reduces to the dual a scheme when # = 0, its amplification factors also reduce to those

of the Leapfrog scheme in this case.

12
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6 Consistency and Truncation Error

In this s(;ction, we discuss the consistency and truncation error of the a-#([1) scheme. For

a similar analysis of the. a-#(I2) scheme, the reader is referred to [6]. As a preliminary, this

section will begin with a discussion of a critical concept.

First, note that in a typical numerical scheme, a physical variable is associated with

a single numerical variable• Thus, a system of two coupled physical equations involving

two independent physical solution variables, at each mesh point generally is modeled by

a system of two coupled discrete equations involving two independent numerical variables.

Also, one would expect that the two coupled discrete equations are consistent with the two

coupled physical equations. Thus, in general, one would not expect that two coupled discrete

equations be consistent with only a single PDE.

The a-#(I1) scheme is nontraditional in one key respect. Even though it is introduced

to model a single PDE (i.e., Eq. (1.2)) with a single dependent variable u, at each interior

mesh point it is formed by two coupled discrete equations (see Eq. (3.12)) involving two

- " = n 12(u=)]).independent numerical variables u3 and (u,)s (note: + "

The numerical variables u}' and (u,)i could be "interpreted" as the numerical analogues

of u and Ou/Ox, respectively. However, it should be understood that this interpretation is

not exact in nature and that it certainly does not invalidate the fact that u_ and (u,)_. are

independent numerical variables. As a result, one would expect that the two equations given

in Eq. (3.12) be consistent with a system of two PDEs with one of them being Eq. (1.2).

The interior equations of the a-#(I1) scheme, Eq. (3.12), represent the results of the

evaluation of Eq. (2.6) with the use of Eq. (3.5). Consider the equations obtained by

evaluating •

F+(j,n) =0 (6.1)

and

F_(j + 1,n) = 0 (6.2)

These are two distinct conservation equations, although the conservation elements involved

occupy the same physical region. The a-#(I1) scheme can obviously alternatively be de-

scribed by specifying these two equations. Linear combinations of these equations are next

examined, in order to investigate the consistency of the scheme. Adding the equations

symbolized by Eq. (6.1) and Eq. (6.2), and dividing the result by 2/kx/Xt, results in

[FDEI(u, u:)li+_ = 0 (6.3)

with FDE1 as defined below. Also, subtracting Eq. (6.2) from Eq. (6.1), and dividing the

result by 2(1 - u 2)/Xx 2, results in

n-½
[FDE2(u,u=)lj+½ = 0 (6.4)

13
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H(ue, FDE1 and FDE2 are defined as

[FDE l(u, v)jj+½"_-½d,,f=

1 [U 1+1 n-[ n n-ll a r I n2At " -uJ+' +uj -uj J +_kLj+t-u:i";'u2+ _-u2-' ]

[vs+,-"7+ ,,7;I- v52 Ax n n-l]

4]. .- _St - [/35+,- v5- "7;: +v7-']

(6.5)

n .kdef

FDE2(u, v 5

-- n n un-11 [/3;+_+ _J+ +/37-']
4 5+a

1]0_ n n n

4(_-_)[_J+_-_7+_J+_-/35-,+_7+-__-_-_+%' -_7:?]

1 [ujn+, uj + "-'

/2 [_Zj+I n-, nn -- Itj+ 1 dr- -- u_ -x] (6.6)
2 (1 - v 2) Ax uj

Note that, to emphasize the fact that u2 and (u_)5 are two independent marching vari-

ables, a new symbol v is introduced in Eqs. (6.5) and (6.6).

Let 72(x, t) and _(x, t) be smooth functions. Furthermore, let (i)

PDEI(_z) d_!=Ofzo_..[+ a__x _ #._z 20_02ft (6.7)

0_ (6.8)
PDEZ(_z, fJ) e__I__ 0""_

and (ii) fz'] = a (j Ax, nat) and @ d,=_.I_ (jAx, nat). Let [FDEI(u, v)]5+ ½ and [FDE2(ft, _)]j_

be considered as the discrete approximations of [PDEI(u)]5+ ½ and [PDE2(fz, _)]_._, respec-

tively. Then the errors ER1 and ER2 in these approximations may be defined by

[ER1]"-_ d,l [FDEI(ft, v)]5+_ - [PDEI(u)].i+½ (6.9)
J+y

-.-½d_: _ .-½ --½
ER2Is+½ = [FDE2(_,v)]5+ ½ - [PDE2(fz, _)]5+½ (6.10)

With the aid of Taylor expansions, it may be shown that

= -I_'_z f)-'_z +Ox20t 8 + 0t 324

03z2 Ax 2 0372 At 2 o_ Ax 2 03_ At 2

1 02_ [a2At2 - Ax2] 03_ /kt2-_80xOt -a#'ox20t 4 +O(A_) (6.11)
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It, may similarly bc shownthat ==
I

02_ Ax 2 02_ At 2
-_ +

Ox 2 8 cgt2 8

vaAx [ 03_- 2 03_ - 2]

+ 12 (1 - u 2) [7_x3 Ax + 3_At ]

1 [°_u 2 03u 21

+3 atj
vat [ 03_ - 2 035- 2]

24 (1 - v 2) Ax [30-'x'T_Ax + _--yAt J + O (A 3)

._Ax 1 _At (A3) (6.12)
+(1 - _2)O(A_) (1- _)O (A3)_ (1- _2)Ax°

In Eqs. (6.11) and (6.12), all derivatives are evaluated at ((j + 1/2) Ax, (n - 1/2) At). Each

symbol O (A 3) represents an infinite sum of terms, in which derivatives of _ or _, and the

quantities a, # and AxIAt " occur only as factors in the numerator of each term, with

l,m > 0 and l + m >_ 3.
Let fi and _ be a solution of the system of PDEs PDEI(_t) = 0 and PDE2(£t, _) = O.

v)]::t_,2 and [FDE2(fi, _)]j=____are by definition the truncation errors of theThen [fDEl(fi,

discrete equations (6.3)and (6.4). Because [PDEI(fi)]j+_ =0and [PDE2(_,_)]_+_" 0,

Eqs. (6.9)and (6.10)imply that [FDEI(_t,_)]_.+_ =" .n-½ _ . ,_-½ _[ER1]i+½ and [FDE2(u,v)]j+½ -

"-½ Also, because 1[ER2]j+½ [eDEI(_)]_._ 0 and [PDE2(5,9)]j+_ = 0, the first term

on the right hand side of Eq. (6.11) and the first two terms on the right hand side of

(6.12) vanish. Assume v 2 # 1. Let the rule of mesh refinement be such that a_ remains

bounded as Ax _ 0 and At ---. 0. This implies that v and a Ax also remain bounded.

Examination of ER1 and ER2 then shows that (i) the discrete equations (6.3) and (6.4) of

the a-tt(I1) scheme are consistent with the advection-diffusion equation PDEI(fi) = 0 and

with PDE2(_z, _) = 0, and (ii) the scheme is second-order accurate in space and time.

In [6], a similar consistency analysis of the a-#(I2) scheme is performed. The conclusion

drawn there is that if the rule of mesh refinement is restricted as described in the previ-

ous paragraph, the a-#(I2) scheme is also consistent with the advection-diffusion equation

PDEI(fi) = 0 and with PDE2(fi, _) = 0, and the scheme is also second-order accurate in

space and time .....

7 Numerical Results

Three test problems will be used to evaluate the accuracy of the a-#(I1) scheme. It is shown

in [6] that the a-tt(I2) scheme yields similar results.
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7.1 Decaying Traveling Sine Wave

In the first probh;nb we consider a special case of Eq. (1.2) (a = I and # = 021) with

0 _< x <_ 1 and t >_ 0. The irfitial and boundary condition functions at(x), ut.(t) and un(t)

are defined such that they are consistent with a special solution to Eq. (1.2), i.e.,

u = u_(x, t) d_2 exp(-4_'2#t)sin [27r(x - at)] (7.1)

Let uex(x, t) do=fOue(x, t)/Ox. At any time t = t n, let

J-1

L1 (u) def 1
= (J- 1)exp(-47r2# tn) Elu,j-u_(xj,t")l (7.2)

j=l

J

(J + 1)21rexp(-4r_# t") .= I(ux)'j - ue_(xj,t")] (7.3)

Ll(u) and Ll(U_) are two error norms (per mesh point) which are normalized by the decay

factors of u_(x, t) and u_(x, t), respectively.

Let J = 80 (i.e., Ax = 1/80) and u = 0.8 (i.e., At = 0.01). Then a numerical computa-

tion yields Ll(U) = 0.7961 x 10 -3 at t = 4 (i.e., n = 400). Through numerical experiments,

it has been shown that both Ll(u) and L_(u_) at a given time t are reduced by a factor of 4

if both Ax and At are reduced by half, confirming the second-order accurate nature of the

scheme.

Fig. 5 shows a comparison of the computed solution at t = 4 with the exact solution. It

also shows the error u_(xj,t _) - u'_ scaled by the peak magnitude of the exact solution at
that time level. It is seen that the maximum error is less than 0.3% of the peak magnitude.

The peak magnitude is seen to be just over 0.2.

Fig. 6 shows a comparison of the errors in the solutions obtained with the a-_(I1) scheme

and the implicit MacCormack scheme ([15]). Both schemes were applied with the same

parameters _d mesh as described above. It is seen that the current scheme is considerably

more accurate than the implicit MacCormack scheme. Refinement of the grid keeping u

constant would actually make the comparison even more favorable. This is because the

implicit MacCormack scheme is second-order accurate in space and time only if a is held

constant and u _ 0 when refining the grid.

7.2 Pure Diffusion

We consider a special case of the convection-diffusion equation with a -- 0 and p = 1, in

the domain 0 <: x <: 1 and t > 0. The initial/boundary conditions completing the problem

specification are (i) u(0, t) = u(1, t) = 0 for t > 0, (ii) u(x, 0) = 2x for 0 _< x < 0.5, and

(iii) u(x, 0) = 2(1 - z) for 0.5 _< x <: 1. The solution u(x, t) exhibits the diffusive decay

of the initial sawtooth shape. An exact series solution is available, see for e.g.p.15 of [16].

For the CE/SE computation, uniform mesh intervals Ax = 0.02 and At = 0.005 are used.

Fig. 7 shows the time-slice at t = 0.05, comparing numerical and exact solutions, and also
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showing tile error scaledwith the peakexact wdll(,'at that time lev(:l. Th(',m_,ximumerror
magnitu(h: is s(:(;nto be aboltt 0.5%of tile peaksolution value. At. t = 1 (not show_l), when

the peak solution value has dwindh,'d to about 4 x I0 -'5, the maximum error magnitude is

about 0.15% of the peak solution value.

The same problem on the same mesh was solved with the Crank-Nicolson scheme, which is

probably the best traditional scheme for the parabolic pure diffusion equation. Fig. 8 shows

a comparison between the current scheme and the Crank-Nicolson scheme, at t = 0.05.

The schemes are seen to be of similar accuracy, as is to be expected from the fact that,

when a = 0, the principal amplification factor of the a-#(I1) scheme is identical to the

amplification factor of the Crank-Nicolson scheme.

7.3 Steady State Boundary Layer

We next consider the problem defined for the convection-diffusion equation in the domain

0 < x < 1 and t > 0 by the conditions (i) u(O,t) = 0 for t >_ 0, (ii) u(1,t) -- 1 for t >_ 0, and

(iii) u(x, O) = x for 0 < x < 1. The 'steady-state' or time-asymptotic limit of the solution is

u(x, cx)) = [exp(ax/t z) - 1] /[exp(a/#) - 1].

The case a = 1, # = 0.01 is selected, so that the 'Reynolds' number Re = a/_ = 100.

This leads to the formation of a fairly sharp boundary layer, because the thickness of the

layer scales as the inverse of the Reynolds number. Uniform mesh intervals Ax = 0.0025

and At = 0.002 are used, so that the Courant number is 0.8. Fig. 9 shows the computed

and exact steady-state limits, together with the error. The boundary layer is seen to be well

resolved, with the maximum, magnitude of the error being about 1% of the solution peak.

8 Conclusions and Discussions

In the explicit a-# scheme [1, 10], the diffusion term in Eq. (1.2) is not modeled, i.e., Eq. (2.3)

is assumed. Also the diffusion term in Eq. (3.1) is modeled with no interpolation or extrap-

olation, with a resulting reduction of time-accuracy. Obviously, such a solver can be used

only when the diffusion term is small compared with the convection term. Contrarily, the

diffusion terms in both Eqs. (1.2) and (3.1) are modeled in the current implicit solvers.

The current implicit solvers are carefully constructed so that they become identical to

the explicit dual a scheme for the pure convection equation, when the viscosity coefficient

vanishes. Because the dual a scheme is nondissipative, this construction ensures that the

physical dissipation is never overwhelmed by numerical dissipation in the present implicit

solvers.

The implicit schemes have been shown to be stable provided the Courant number does

not exceed unity in magnitude. There is no dependence of the stability of the schemes on

the viscosity parameter, other than the condition that # _> 0. Stability analysis reveals the

remarkable facts that (i) if # = 0, the amplification factors of the dual-mesh implicit schemes

reduce to those of the classical Leapfrog scheme, and (ii) if a = 0, one of the amplification

factors of the implicit a-# schemes reduces to that of the classical Crank-Nicolson scheme.

The truncation error analysis of the discretized equations of the implicit schemes shows

that, if the Courant number remains bounded when refining the space-time mesh, they are

17



4'
Vl

consistent with the conw;ction-diffusion equation, atul are second-order accurate in space

and time.

Numerical examples have borne out the conclusions of the stability and truncation error

analysis. The current implicit schemes were seen from the nuInerical examples to enable

stable accurate computations over the whole viscosity range, from the pure diffusion case to

convection dominated problems.
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